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Abstract: , S48
Relatively recently in the world of mathematics education, there has been a push
to connect concepts students are learning to areas outside of mathematics. It seems
sensible, however, that these areas of application should be topics in which students
would find interest. One such topic area that turns out to lend itself well to discussions of
several aspects of the mathematical idea of non-linearity is guitars. This paper discusses
the ways in which the guitar can be used to examine those applications of non-linearity.

Ideas on how to implement those applications into a secondary mathematics classroom

are also included.
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Guitars Are Non-Linear!

The Ideas

Non-linear functions are functions whose graphs are not straight lines. These
functions include circles, parabolas, hyperbolas, quadratics, exponentials, trigonometric
functions, and many other functions. Non-linear functions tend to be a bit more complex
in general than linear equations, which makes them more interesting as well. Their
complexity points to another fact about non-linear functions; the real world 1s non-linear.
The straight line is a very specialized case of a function, and very few real life
applications are truly linear. So, although it is easier to start a discussion of functions and
relationships between variables by examining linear cases, it is of utmost importance that
much emphasis be placed on non-linear functions and that all different sorts of non-linear
functions be examined in-depth.

Applications of non-linearity are found in almost all aspects of the real world.
They even show up in subjects to which one would not typically think that mathematics
could apply. For instance, there are several interesting applications of non-linearity to be
found in examining the standard acoustic guitar. Though most think of music and
mathematics as totally separate realms, there are some interesting ideas about guitars,
specifically thetr shape and the way they produce sounds, that automatically lead to
discussions involving non-linearity.

One interesting example of an application of non-linearity found in discussing the

working of guitars is the relationship between the vibration frequency of a taut string (at a



constant tension) and the length of that string. In the case of a guitar, the length of the
string can be considered the length of the portion of the string that vibrates when plucked.
For instance, this would be the entire length of the string when the string is plucked
‘open’, or without being held down on any fret by the guitarist. The length of the string is
essentially shortened when it is held down on a fret, because the string only vibrates
between the lower bridge and the fret where it is held down. It is easy to recognize that
there is a relationship between the frequency of the string and the length of the string,
because that is how a guitar is played. Vibration frequency is directly related to the pitch
heard. When the frequency at which a string is vibrating goes up, so does the pitch.
When the frequency decreases, so does the pitch. When playing a guitar, a guitarist
changes his hand position and the location of his fingers, which changes the lengths of the
different strings, thereby creating different frequencies (and thus different pitches).

But how exactly can the relationship between frequency and length be expressed?
It would probably seem at to a layman at first glance that the relationship would be linear,
because that is the easiest way to view relationships between variables. This would
mean, however, that if a string were shortened by any proportion, the frequency would
increase by the same proportion. The relationship between the length and frequency
would then be expressed mathematically by the linear equation F =nx L where F is the
frequency, L is the length, and » is some constant of proportionality relating the two
variables. (In this case, n would necessarily be negative because of the simple fact that as

string length goes down pitch goes up.} The graph of a linear relationship of this sort

would have the same form as the following.
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This linear relationship does not hold, however. It is actually true in the case of
strings that there is a non-linear function that provides a much better model for the
relationship between frequency and length. This can best be seen through a graphical

representation.
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This graph depicting the actual relationship between frequency and string length
shows a definitive non-linear relationship, but the picture itself still does not tell exactly

what that relationship is. One who has had experience with differing types of non-linear



functions and their corresponding graphs might be able to postulate a fairly educated
hypothesis about the nature of the graph, and therefore the function relating the two
variables. One specific bit of data that should be noted is that as the length of the string is
halved, the frequency doubles, which means the pitch goes up by an entire octave. This
alludes to an inverse relationship between the variables. This dependence can be
expressed mathematically as

K
StringLength

Fregquency =
where K is a constant equal to the frequency of the plucked open string multiplied by the
length of the open string. For instance, if an open “A” string (frequency equal to 440 Hz)
is 2 feet long, and the “E” a fifth above the “A” was played (app.660 Hz) on the same
string, the new length would have to be 1.33 feet, which is 2/3 as long as the open string.

Another noteworthy thing about the length-frequency relation is that the function
has a restricted domain, which is to say that neither the length nor the frequency can
exceed certain limits. What type of limits would be expected to be found intrinsic to this
problem if looked at from the real-world case? If the guitar were actually held and played,
what could be inferred about how high or low the frequencies could be, or how long or
short the string could be allowed to be? It becomes apparent after playing with a guitar
for some small time that for a given string, there is a lowest note and a longest length. A
string cannot be made any longer (at least through normal conventions) than it is when it
is played open. The frequency will also be the lowest it can be when the string is played

open. However, what is the highest possible note and the shortest possible string? In

theory, the string could get infinitely shorter (and the frequency infinitely higher) by the



guitarist’s finger falling closer and closer to the lower bridge. However, there are some
facts that exist in the real case that cannot be ignored. Firstly, the short length of a
guitar’s fret board relative to the length of the strings does not allow for all the possible
frequencies a string could play. If the fret board is ignored though (which is reasonable
since it is possible to still play notes beyond the fret board), there are still a few major
hitches. One is that a guitarist’s fingers would not really be able to approach the bridge in
infinitely small increments because the guitarist would not have that precision and his
fingers would be too large. Using the previously addressed fact that as string length is
halved the pitch goes up an octave, it becomes apparent that as the guitarist’s fingers
approach the bridge and higher and higher frequencies, entire octaves lie within a span no
wider than a fingertip. Another reason the guitarist’s fingers cannot approach the bridge
infinitely is because there needs to be enough room between the guitarist’s finger and the
bridge to pluck the string. Yet another problem is that the range of frequencies to which
the human ear is sensitive is not infinite. If the ear is the device by which the frequencies
are detected, there is a point at which frequencies can no longer be detected. Most
guitarists, unless playing some twentieth century piece by the likes of John Cage, would
hardly want to play notes that no one could even hear.

The relationship between frequency and length is only one of the relationships
related to guitar playing that is non-linear in nature. It can be found that there also exists
a relationship between the tension of a string (of a given length) and its frequency. As a
string is tightened, the pitch goes up. That is a basic fact that can be observed easily, and
that is also used every time someone tunes up a guitar. How much does the pitch change

for a certain change in tension, though? And is the amount of pitch change dependent on



how tight the string is to begin with? As anyone who has ever strung and then tuned a
guitar would have observed, a loose string when first being tightened changes pitch
rapidly to approach the range the string is meant to be played in. But as the pitch gets
close to the pitch it is meant for, the pitch changes much more slowly. This relationship
can easily be observed to be non-linear by plucking and tightening the string
simultaneously. If the relationship were linear, the rate at which the pitch would increase
would stay constant as the rate of increase in tension remained constant. However, in
reality, as the tension increases at a constant rate, the pitch changes much more
dramatically at low tensions than at high. The actual non-linear function that describes

the relationship between frequency and tension, assuming constant length and string mass

1 Tension
Frequency = [5 .’_,eng,'th)(1 {“‘m]

where ‘m.p.l.” refers to the mass per unit length (Hall, pg. 673). A graph of this function

per unit length, is

has the same form as the following,.
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This graph has a much different shape than the graph of frequency as a function of
string length. The reason for this specific non-linear shape in the second graph is the fact
that the frequency changes as the square root of the tension. This means, as can be noted
on the graph, that for frequency to double, tension must quadruple; and for the frequency
to triple, the tension must increase by a factor of nine; and so on.

Using the same formula as in the last case, it should be noted that the frequency
could also be changed by leaving the string length and tension constant, and changing
instead the string’s mass per unit length. This is not such an easy task with one string, but
observations can be made of several strings of the same length with equal tensions, but
each with a different mass per unit length (as is the case with a standard set of guitar
strings). A graphical representation can be produced strictly through observations and
plotting data points. However, the shape of the function can also be examined through
plotting the function itself. According to the function, the frequency will vary according
to the square root of the inverse of the m.p.1. For instance, if the m.p.l. is quadrupled, the
result will be a decrease in frequency by a factor of two. For the frequency to double, the
m.p.l. would have to decrease by a factor of four. The relationship between these two

variables is represented in the following graph.
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One interesting thing to note about this function and its graph is that it is, in a
sense, a mix of the previous two types of functions. In this function the frequency
changes as the square root of the inverse of the m.p.1., so that relationship could be looked
at as an inverse relationship (like the frequency-length retation) and also as a square root
relationship (like the frequency-tension relation). This fact is also reflected in the graphs
as they are compared with one another. The fact that the last graph is more similar to the
first than to the second implies which of the two aspects of the frequency-m.p.1.

relationship (square root or inverse) has the most bearing on the function’s overall shape.

Geometry provides another quite different way to look at the guitar from a
mathematical perspective. There are some very basic ways of approaching the topic of
the guitar from a geometric perspective that imply non-linearity. For instance, could the
silhouette of the body of the average acoustic guitar (front view) be drawn using only

straight lines? Though it is possible that Picasso would argue with the guitar’s non-
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linearity, the typical artist would not attempt to represent a guitar with only straight lines.
Since the guitar is a ‘curvy’ instrument, the shape of the guitar could best be modeled
using non-linear functions. Now, a single function describing the entire shape of an
acoustic guitar would be a very complex non-linear function. But a fairly good
representation of a guitar can be created by looking at different parts of the guitar and
estimating the shape of each part using portions of basic non-linear functions like
hyperbolas, parabolas, and circles. (Admittedly, it would be hard to get around the
problem of drawing the neck of the guitar without some straight lines. Linear functions
are useful also.)

The following representation of a guitar was created using portions of some basic

non-linear functions typically studied in algebra.

14

This particular representation is a combination of different non-linear functions,
each used to represent part of the guitar. The top portion of the guitar can be modeled
well with a parabola. The bottom appears to require a ‘rounder’ function, so a simple

semi-circle is used. It can be observed in looking at the guitar that the two sides are
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symmetric to each other across the central vertical axis, so a function with that sort of
symmetry is used, namely a simple hyperbola of the form Ax® + y* = B. The central
‘sound hole’ of the guitar is clearly modeled best by a circle.

The actual functions used in the above model of the guitar are as follows:

Top: 13x*+y=7

Bottom: y=—v36—x> —35
Sides: —15x*+y* =20

Center: x> +y* =2

Another way to look at the guitar from a geometric perspective is as an area
bounded by portions of functions. In this way, the area of the guitar, or more specifically
the area of the front of the body of the guitar, could be arrived at using integration
techniques. The guitar face can be broken into different sections and the area of each
section can easily be arrived at by integrating over the functions within the limits given by

the intersections of those functions.
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Teaching the Ideas

Many of the aforementioned ideas are quite pertinent to the secondary
mathematics classroom because they relate solid mathematical ideas to an interesting
real-world situation. It has long been thought that an integral part of effective
mathematics teaching is applying mathematical concepts to real situations that students
can relate to. Traditional story problems in textbooks do this to some degree, but there
has been an even greater focus on this in recent years, Textbook companies have been
attempting to answer the call of mathematics education specialists to offer effective real-
world applications of mathematics, connections of mathematics to everyday life, and
situations wherein students model real problems using mathematical concepts. The
National Council of Teachers of Mathematics, for instance, in its 1989 Curriculum and
Evaluation Standards for School Mathematics, calls for increased attention to be paid to
real-world problems in many different subject areas. In the area of high school algebra,
the NCTM Standards says that “the use of real-world problems to motivate and apply
theory” should receive increased attention. In geometry, “real-world applications and
modeling” should receive increased attention (NCTM, pg. 126).

The aforementioned ideas relating guitars to non-linear functions can be an
effective integration of real-world applications in an engaging manner. One of the
motives behind relating mathematics concepts to real-world problems is to show students
how applicable mathematics can really be to their lives and to interest them more in the
underlying content. The specific real-world applications in texts and classroom lessons

must focus on applications in which students’ interest lie. High school students tend to
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be quite interested in music, particularly rock ‘n roll, and should find the integration of
such a ‘cool’ instrument as a guitar into their mathematics curriculum to be an interesting
and welcome change from their standard mathematics lessons.

The exploration of the relationship between string length and frequency could be
looked at from several different perspectives as a potential classroom activity. A brief
discussion of the relationship and its graph, along with a demonstration showing some of
the characteristics of the relationship might be a nice way to integrate the idea into the
classroom without demanding a great deal of time being spent on the idea. This

discussion and demonstration would probably best accompany a lesson on inversely

1
related variables or the function f(x)=—. An actual guitar could be brought into the
X

classroom to act as an aural and visual accompaniment to the discussion, which could
begin by telling students that there is a relationship between string length and frequency
that acts like the relationships they have been studying.

A more in-depth exploration could be planned, though, which could allow the
students personal experience finding appropriate models for a real-world problem. In this
case, one or more guitars would need to be available to the students to explore the
relationship between frequency and string length for themselves. This activity would
require students to collect their own data on the relationship using either visual
approximations of length and aural approximations of frequency (based on heard pitches),
or more precise data collection using rulers and frequency measurement devices.

Students would collect data and plot it to look at the shape of the function. It would be

immediately apparent that the relationship is non-linear, but in order for students to
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determine the exact relationship, they would need to either look at the data more closely
(possibly with some guidance from their teacher), or utilize a computer program that
would allow them to do best-fit approximations of their data with several different types
of non-linear relations.

The fact that the situation implies a restricted domain is another interesting point
that could be taught in a number of different ways. The idea could be the basis for a class
discussion, asking the students to think about what aspects of the real situation would put
limits on the actual range of possibility for the variables. For a more personal
exploration, students could instead be asked to think about and explore those limits
themselves and arrive at specific values for those limits. They could then include their
findings as the limits of their final graphs of the relationship between the variables.

In the other cases where frequency varies according to changes in tension or mass
per unit length of the strings, explorations and discussions would be similar. The biggest
difference between the frequency-length case and these two cases is the need in the latter
two for a mechanism by which to determine tension on a string. It would be difficult to
record data on the tension of a string that is already in its normal configuration on a
regular guitar. A better way to determine the tension on a string is to simply apply a
known force to it (using calibrated weights), which would require the use of some
alternate device than the guitar’s machine heads for applying the tension to the string.
Suggestions for such devices can be found in science articles examining aspects of the
guitar related to physics. One such device has the guitar placed on a table with its strings

running past the machine heads on the guitar to a roller with grooves on it. The roller is
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attached to the corner of the table and the strings can hang from it over the edge of the
table with weights hung from them (Hall, pg. 674).

Once some type of mechanism like the one explained is available for applying a
known tension to a string, students can explore the relationship between frequency and
both tension and mass per unit length. For the frequency-tension relationship, students
would need to make observations, and graph their data, of the string’s frequency while
changing the amount of weight attached to the string. In the exploration of the frequency-
m.p.l. relationship, students would not need to change the tension of the strings, but
would need to have multiple different strings all with the same weight hanging from
them. They could then make observations and plot data about the relationship between
the frequency and mass per unit length. Weight could be changed on all of the strings to
see if their findings were consistent for other tensions.

Again, these explorations lend themselves to an additional discussion or activity
about limits on the range and domain of the function. Is there a minimum or maximum
for any of the variables? A very poignant display of the upper limit for string tension
would be found when a string snaps because its load is too heavy for it. Students could
explore these types of limits on the different variables and discuss them, or could find the
bounds and present them with their final graphs of the relationships.

With each of these explorations into the relationships between variables, there is a
focus not only on “functions that are constructed as models of real-world problems,” an
important topic according to the NCTM Standards; but there is also a focus on the
connections between the problem situation, the function in symbolic form, and the graph

of that function, another area of emphasis in the Standards.



The geometric approaches to the non-linearity of the guitar also lend themselves
to classroom activities that could draw on students’ interests to apply mathematical
concepts to real situations. Modeling the shape of the guitar using different functions
may seem a fairly basic exercise, but it would be a good method of familiarizing students
with those non-linear functions while maintaining their interest. The exercise, for which
students could use most any basic equation-graphing software, would also be a way of
allowing students’ creativity to enter into their problem-solving, really challenging them
to think for themselves and using the exact equation they deem best fit for each part of the
guitar. The activity could also be extended to challenge students to think about how to
change their graphical representations of guitars in order to move the guitar up, down, to
the right or left, or to rotate the guitar. This would help solidify students’ understandings
of the relationship between their equations and the graphical representations thereof.

The more advanced idea of integrating to find the area of the face of the guitar
bounded by the functions would be a good activity for an advanced calculus class. The
activity would first necessitate that the students find their limits of integration by finding
the intersections of the functions. Then they would have to use what they know about
integration over two dimensions to break the figure into appropriate portions, then
integrate to find the area of each portion. This activity would be relatively simple
practice of calculus, but the connection to a real-world application should interest
students more than integrating over shapes with no connection to real life.

Modeling aspects of the guitar is a creative exercise in problem-solving which
would be beneficial to students’ understandings of the functions they are dealing with.

These ideas in general are examples of some of the many real-world applications of

17



mathematics to topics in which students would likely be interested, thereby offering them
more motivation to focus on the involved concepts. The guitar is something high school
students find interesting. It also lends itself well to several explorations of non-linearity.
Why not take advantage of student interests to help teach them? Thank goodness guitars

are non-linear.
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